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ABSTRACT 

The Diliberto general perturbation method 

based on the theory of periodic surfaces has been 

applied in  a new and more sui table  coordinate system. 

As a resul t ,  analysis and resu l t s  have been consider- 

ably simplified. An analyt ic  treatment of the time- 

angle relationship f o r  t h i s  coordinate system has 

been developed. By introducing a fur ther  change of 

variables, low eccentricity s ingular i t ies  have been 

eliminated. 

o rb i t s  have been examined, and convergence of the 

The special  cases of polar and equatorial  

method demonstrated in  the  la t te r  case, Both the 

basic and the low eccentr ic i ty  method have been 

tes ted numerically. 
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FINAL REPORT 

EARTH SATELLITE ORBIT COMPVTATIONS 

Part  I - The Diliberto Theory 

I"RODU=TION 

"he ear th ' s  misymmetric gravi ta t ional  potent ia l  is  conveniently 

writ ten as a function of two variables u and v, where u is  the  reciprocal 

of the geocentric distance and v is  the s ine of the geocentric la t i tude.  

The orb i t  of a near earth s a t e l l i t e  is  then essent ia l ly  determined by the 

solutions of the non-linear ordinary d i f f e ren t i a l  equations 

where w is a t imel ike  variable, and h is  a smll parameter maswing  the 

oblateness of the earth. 

It can be shown t h a t  v = s i n  i s i n  p s  dv/dw = s i n  i cos B, where 

i is the inclination of the orb i t  plane and f3 is  the argument of the la t i tude ,  
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Therefore, the solutions of (1) determine the  posit ion of the satellite i n  

the orbi t  plane together with the plane's inclination. The longitude of 

the ascending node and the relationship between wand t must be found by 

quadratures. 

Since an exact representation of the solutions i s  unavailable 

except i n  cer ta in  special  cases, such as an orbi t  lying i n  the earth's 

equatorial plane, approximting formuhs have been generated by various 

methods. 

by expansions i n  terms of doubly periodic functions un, vn, 

Most of these methods assum that the solutions can be represented 

n=O 

n=O 

where the variables $$ and g2 are solutions t o  

n=l  
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In t h i s  context, a doubly periodic function has period 2n i n  each of the 

variables 

variables 

different  

variables 

4 and &* 
There is  considerable f l e x i b i l i t y  i n  the selection of the 

g1 and g2* 
general perturbation schemes is  extremely d i f f i cu l t .  

#j are usually related t o  inplane angles such as the t rue  anomaly 

Because of this ,  term by tern comparison of 

The 

or the argument of the la t i tude,  but th i s  is not always the case. 

d i f f e ren t i a l  equations ( 3 )  are sometimes defined inductively, using the 

requirement that the function un and vn be double periodic, 

approach is used, some process of "removing the secular terms" is required. 

The 

If t h i s  

Equations ( 2 )  and ( 3 )  define a transformation of coordinates 

from u, du/dw, v, dv/dw t o  u, v, jd1, g2. 
t ransformtion can be singular fo r  nearly c i rcu lar  orbi ts .  Another feature 

of general perturbation schemes is the failure of the terms i n  the 

expansion ( 2 )  t o  be defined at  the c r i t i c a l  inclination, cos2 i = l/5. 

Unless care is  taken, th i s  

The representation ( 2 )  can be interpreted as defining a torus- 

l i k e  surface in the four dimensional phase space of the variables u, du/dw, 

v, dv/dw. This periodic surface is  an invariant manifold of the system (1) 

i n  that it i s  generated by the solutions t o  the d i f f e ren t i a l  equations. 

The motion on the surface i s  governed by equation (3) .  

S. P. Ml ibe r to  recognized that the invariant manifold which is 

implicit  i n  the representation ( 2 )  can be considered as the intersect ion 
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of the m i f o l d s  defined by two periodic integrals,  the first of these being 

%he known energy integral. The second, he conJecturedto be associated 

wdth the angular momentum of the satelli%e i n  that the vanishing of the 

oblateness parameter ')a implies t h a t  the second integral  is a statement of 

the conservation of angular momen'sm, 

This geometric interpretation has l ed  t o  a systematic- method [ 2 , 3 ]  

for generation the  terms in the expansion (2> ,  

principal  steps:  

This method has three 

1) Developing an expansion for the  eongecltured periodfe 

integral ,  

2 )  Inverting this  in tegra l  simultaneously with the known 

energy integra1 t o  obtain equations of a surface which 

approximtes the periodic surface, 

3) Deriving approximations to the solutions on the surface, 
c 

Further details are given E n  Sections 3 and 4, %ahere some xmterial *om 

previous work [2, 33 is repeated, considerably revised, for the  sake of 

better exposition, 

exis ts ;  that is, the doubly perfodfe functions un and vn can be calculated, 

but the  convergence of the process has not been es%ablished except $QP the 

It has been shown %hati a form1 expansion of Ohia s o r t  

somewhat t r ivial  case of equatorial m b i t s  (seetion g ) Q  

I n  t h i s  report, the  Diliberto expansion procedure is applied i n  a 
I 

coordinate system which proves Po be more suitable than t h a t  introduced i n  h3], 
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as is quite evident when corresponding formulas are compared. 

simplification, extension of the results t o  second order e f fec ts  of t he  

second hasmanic and first order e f fec ts  of the third and fourth harmonics 

i n  the gravitational potent ia l  is too large a task t o  include i n  the 

present study. In the new coordinate system, as well as i n  the old, 

s i n g u h r i t i e s  arise a t  cer ta in  special  values of the paramters ,  

occurring at  zero eccentr ic i ty  are removed by a further change of variable 

set for th  i n  Section 2, and polar (cos i = 0)  orbi ts  are treated i n  

Section 8, but near-polerr (cos i 

inclinations are not considered. FORTRAN programs fo r  the IBM 7090 have 

been writ ten and used i n  numerical tests of both the  basic and the low 

eccentr ic i ty  methods; summaries of formulas and results will be found i n  

Sections 5 and 7. 

Despite this  

Those 

0) and near-cr i t ical  (cos' i 1/5) 

As indicated above, once (1) is  solved it is s t i l l  necessary t o  

f ind  a, the longitude of the asceqding node, and the relationship between 

w and t by quadratures. 

relationship is another matter. 

a solution is, indeed, obtained; however, one which, on account of i t s  

extreme complexity, leaves much t o  be desired, 

The analysis f o r  Sl is t r i v i a l ,  but the angle-time 

The problem is attacked i n  Section 6 and 

Two further aspects of the study may be mentioned: the example 

of Section 10 which shows haw an inopportune choice of coordinates may 

conceal the existence of periodic surfaces, and the quali tative properties 

of equatorial  orbi ts  deduced in  Section 9. 
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In addition t o  S. P. Diliberto, contributors t o  t h i s  report a re  

E. B, Collins, A. H. Halpin, W. T. mer, Be Sherman, and 0. K. Smith., 

Responsibility f o r  f ina l  revision and edi t ing rests with the  last na,med, 

The two programs were wri t ten by J, Ayers, A, H. O'Leary, m d  Je Le Tobey, 
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1. EQUATIONS OF MOTION 

The d i f f e ren t i a l  equations describing the motion of a near 

earth satellite have been expressed i n  many coordinate systems, Here 

they are derived re la t ive  t o  a moving coordinate system which has one 

axis pa ra l l e l  t o  the angular mmentum vector and another pa ra l l e l  t o  

the posit ion vector. 

sui table  f o r  application of the Diliberto expansion procedure described 

i n  subsequent sections. 

The final form of the d i f f e ren t i a l  equations is 

The center of the earth i s  taken as the or igin of the 

coordinate system and is assumed t o  be fixed i n  space, 

t h e  satell i te at time t is defined by the vector r ( t )  sat isfying the  

e quat ion 

The posit ion of 

- 

r = F  - - a2 
dt2 - 

Since we neglect a l l  forces except the gravi ta t ional  a t t rac t ion  of 

the earth, t h e  force is derivable.from a potent ia l  function U 

F = - grad U - 

"he moving coordinate system is determined by three 

uni t  vectors P, Q, and - R. The vector - P is parallel t o  the posit ion - -  
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vector r; the vector - R is  para l le l  t o  the angular momentum vector H, - 
Therefore 

H = r x v = m ,  - - -  
- r = rg, 

- Q = E x P ,  

where H and r are the lengths of the vectors H - and - r and - v = ap_/dt. 

The moving triad - - -  P, Qs R is  described re la t ive  t o  an i n e r t i a l  triad 

- i, L, k - -  (k  directed northmrd d o n g  the  polar0 axis) by the N e r i a n  

angles i, 51, I3 where 

i = the inclination of the orbi t  plane, 

R = t h e  longitude of t he  ascending node 

B = the argument of %he la t i tude  

(see [ 6 ] ,  pages 183 - 184; we use @ instead of u), 

Coordinates of a vector re la t ive  t o  

are related by the equations ( [ & I ,  page 109) 

-1. 

the two coordinate systems 

( 1 2 )  

where the primed courgoncnts rcl.alc t o  t h e  rotalin[: system nncl A. is. 

the  matrix wi th  elements 
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all = cos f3 cos n - cos i sin Q sin f3 

a12 = cos f3 sin a + cos i cos Q sin f3 

= sin B s in  i 

= - sin f3 cos a - cos i s in  0 cos f3 
a13 
a 21 

a = - sin f3 sin Q + cos i cos Q cos 8 

= cos f3 sin i 

= sin i sin 0 

22 

a23 

431 
a = - sin i cos Q 
32 
a33 = cos i 

Since A is a rotation matrix, it has an inverse, A'', equal to its 

transpose 

If the earth is assumed axisymmetric, the potential has the 

familiar expansion in Legendre polynomials [I] 

n=O 

with (x,y,z) the coordinates of a point referred to the inertial 

system. From the general equations (1.2), we have 

and since at the satellite x/  = r, y' = z /  = 0 and 
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the force (per un i t  mass) acting on the  satell i te is  given by 

m 
- F = - grad U 

n=2 
a0 

In order t o  f ind t h e  rates of change of the Euler angles, the 

angular velocity of the rotating system is needed. It is  given by the 

Vtctor 

To verify t h i s  w e  note tha t  different ia t ing H = r x v gives - - -  

- - B = v x v + r x - ~ = ~ x ~ ,  d d 
d t -  - - - 

R x - H = R x ( r  x F) = (R.F)r - d t -  - - -  - - - ,  

d t  

d 

whi l e  different ia t ing H = HR gives - - 

R X - H  d = R x (%E + H  d -R) = H(R x d - - d t -  - d t  - - d t  E) 

Theref ore 

d R x - R = (E*F)rJH - d t  - 
Now resolve w b t o  components i n  the rotating system - 

E = ~ P + u + Q + u  R .  - 3 -  
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d 
- - R = ? X ~ ,  dt - 

d R x - R = R X ( ( w x R ) = a , - a ,  R .  - d t -  - - -  - 3 -  

y P, + m2 2 = - 0 R = (R-F) r/H - -  - 3 -  

Hence, comparing components, 

y= (R.F)r/H - -  

w2= 0 . 

To f ind a, we note that  3’ 

Hence the angular momentum vector may be expressed 

and the angular momentum in  the orbi ta l  plane (the plane of P and Q) 

is simply 

- - 

2 a3 = H/r . 
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In order t o  use t h e  formulas from [4 ]  which give the 

relationship of the angular velocity and the N e r i a n  angles, we 

note that S i  corresponds t o  $,e t o  9 ,  and i to 0 . We have ( [4], 

pages 107 and 134). 

dQ s i n  i s i n  p + - a i  cos p 
(%=at a t  

dQ dP w = - c o s i +  Z '  3 d t  

Theref ore 

dcz - = m1 s i n  f.3 / s in  i 
d t  

dt dS = w3 - y s i n  p cot  i. 

A new independent variable w i s  defined by 

dw 2 2 - = w3 = H / r  d t  = p/(r  cos i) 

where p = H.k = H cos i, the component of angular momentum along 

the  polar axis.  

- -  

By definit ion,  is the  angular r a t e  of change of t h e  

position vector i n  the  orbital plane, hence 



2 df = (r y/p) cos i cos p 
ZG 

asr 2 - = (r y / p )  cot i sin g dw 

2 9 = 1 - (r y/p) cos i cot i sin p dw 

The polar angular momentum is one of the two constants of the 

dotion. 

apply (1.6) e There results 

To verif'y this, differentiate the definition p = H-k and - -  

As a consequence of the assumed symmetry, the force F = - grad U lies 
in the plane of r and k. 

perpendicular to - k and 

- 
The product r x F is accordingly - - - -  

(1.9) I 

Further, it follows by differentiating p = H cos i and utilizing 

(1.9) that 

2 (r y/p) sin i cos p 1 a . E  
if d w =  (1.11) 

Now let us introduce as one of our two principal independent 

variables u = l/r. Then 
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2 Hu dw 
dt= 
dr Hdu 
d t = - -  dw 

2 dH du 2 

dt2 dw 
H U  -- 2 2 d u  2 

- = -  u r  H u  - -  
2 dw dw a 

Derivation of a differential equation in u begins by differentiating 

the relationship 
dr - -  r*v = E 

to obtain 
dv 2 d r  v-v + r. - = (Zl2 + r - 

dt2 

- 
- -  - dt 

Equation (1.8) provides another expression involving - -  v-v: 

and combining these two yields 

With the introduction of u 

dv 2 d r  2 d w 2  - 
(E) - r - - r  dt - dt2 

and w through (1.12), the equation becomes 

2 

fiW 
2 d u  

2 H U  (-+ 

Replacing the acceleration by 

dv - 1 dH du u + -  - H dw = 2' dt 

the force and making use of (loll), 

we finally have the desired result. 

(1.12) 

(1.14) 
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FOP future reference, we note that the energy (per un i t  mass) is 

or9 by virtue of (1.12) and (1.13) 

E = $ HZ [(g)' + u2] + U 

By differentiating the first of these with respect to time, it is 

easy to verify that the energy is, indeed, a second constant of the motion. 

Next let us introduce the second of our two independent variables, 

the sine of the geocentric latitude of the satellite 

v = sin i s in  @ (1.16) 

Differentiating and substituting from (1.9) gives 

- dv = sin i cos @ 
dw 

2 2 d v  
dw 
- + v = (r ql/p> cos i 

According to (1.7) the quantity in parenthesis is related to the 

force as follows 
Qo 

(1.17) (r 2 y / p )  = (EeE)r 3 cos i/p 2 = p(cos i/p) 2 CBn~i(v)unml 

n=2 

SO after collecting results and making use of expansion f 1 0 4 ) 9  we 

have the following system of differential equations 
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2 2 d v  
dw 
- 2 + v = (r y / p )  cos i 

2 = (r  y / p )  v cot i csc i a2 
dw 
- 

9 = o  dw 

2 
w i t h  ( r  ul/p) expressed by t h e  se r ies  above and the trigonometric 

functions related t o  t h e  independent variable v by s in  2 i = v + (dw 

This s ix th  order system of d i f f e ren t i a l  equations i n  u, v, Q, and p 

is equivalent t o  t h e  vector equation of motion (1.1). 

In most of the subsequent analysis, harmonics beyond t h e  second 

w i l l  be neglected. In t h i s  case, we have 

= - 2h uv (1-2 - 2) 
and, omitting the t r i v i a l  equation p’ = 0, the system simplifies t o  

2 2 u” + u = (1-v-v”) [A+2Auu’w/+ Au (1-3v ) 1 

(1.18) 

(1.19) 

(1.20) 

2 where A = p/p , h = - 3ABz/2, and grimes indicate d i f fe ren t i s t ion  

w i t h  respect t o  w. Similarly, t he  expression f o r  t h e  energy (1.15) 
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Mote that Sl does not appear on the right hand side of  any equation. 

We may, therefore, s e t  aside the third, solve the f irst  two simul- 

taneously by the D i l i b e r b  expansion procedure, and then obtain Sl 

by quadratures. 

development w i l l  be discussed. 

In the sections which follow, de ta i l s  of t h i s  
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2. COORDINATE SYSTEMS 

Effective application of the theory of periodic surfaces 

depends upon choosing a coordinate system in the  phase space so 

t h a t  the periodic surfaces have simple representations (In 

t h i s  connection, see Section 10). Two such coordinate systems, 

one sui table  when the eccentricity is  not too small and a second 

which i s  free from t h i s  res t r ic t ion,  a re  developed i n  the  present 

section 

We have from (1.20) the equations 

v / /  + v = AG(v,v’)uv 
(2 1) 

u / /  + u = g($-)+ h uu’Gl(v,v/) + h u 2 G2(v,v’), 

together with the energy integral  (1.21) 

u /  2 + (u-g)2 = g2 + 2%llJ. + ( ~ h / 3 ~ ) & 1  - 3v2) 

Here 
2 2 g(sin i) = A cos i = ~J./H 

G(v,v’) = - 2 ( 1 - ~ - ~  ,2)2 

G1(v,v/) = 2 vv‘(1-v2-v’2) 

G2(v,v/) = (1-3v 2 l(1-v 2 -vJ2) 
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2 If A = 0, then (v +  VI')^/^(= sin i ) is a constant of the 
motion which is simply related to the magnitude of the angular momentum 

vector, that is 
2 (1 - v2 - vt2)H2 = p 

Our basic assumption is that there exists an analytic integral 

’~V(V,V~,U,U’,~) = constant 

such that 

~(v,v’,u,u~,0) = (v 2 + v ,2)1/2 . 

Such an integral is necessarily independent of the energy integral. 

Although a mathematical proof of the existence of the angular 

momentum integral has yet to be given, there are sound reasons 

for using it as a basis of an expansion procedure. Among these 

is the role of this integral in the Ransen general perturbation 

scheme which was used so successfully in the Vanguard program. 

It can be shown (unpblished result of W. T. Kyner) that the 

convergence of Hansen’s method implies the existence of the integral 

(2.3). 

The pair of integrals, the known energj integral and the con- 

jectured angular momentum Integral, define surfaces in the four 

dimensional phase space of the variables v,v/,u,u’ whose inter- 

section is homeomorphic to 6~ torus. This torus-like surface, as a m  

(2.31 
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the integrals, is generated by solutions to the differential equations 

(201)0 

the geometry of the phase space and a framework for our approximation 

scheme ., 

It is central to our study, giving us both information about 

If h is equal to zero’ the surface is i n  fact a torus which is 

most easily represented in polar coordinates 

u = g(r ) + r2 sin Q2 1 v = r sin el, 1 

2” u‘ = r2 cos 6 1’ v‘ = rl COS e 

The equation of the torus is simply 

where the constants p are 3 

= sin i the angular momentum integral, P1 0’ 

Using this coordinate system with non-zero h, the intersection 

of the two independent integrals can be described as a periodic two - 
surface 
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DEFINPsrION: 

EL pair cf m-alytic fuctions 

A periodic two surface of equation (2.1) is  the graph of 

r = s ( e  e A) 
j j 1’ 2’ 

defined for  a l l  

period 2 ~ r  i n  Q and such t h a t  i f  

and f o r  some neighborhood of A = 0, with 

3’ 

then the solution functions r (w), 0 (w) taking on the i n i t i a l  values 3 3 

satisfy 

f o r  - Qb < w  < + a .  

The remainder of t h i s  section consists of a discussfon of t h e  

two coordinate systems which were used and a derivation of t h e  

“normal forms” of the  d i f fe ren t ia l  equations. 

t o  get  the essent ia ls  of the method of periodic surfaces, it may 

be well t o  skip d i rec t ly  t o  the  treatment of t h e  expansion proce- 

dure i n  the next section. 

A t  a f i rs t  reading 

The coordinate system which has been introduced enables us t o  

define t h e  periodic two surface i n  terms of c lass ica l  variables. 

( 2 . 5 )  
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For example, 

P- = sin i, the sine of the 

el = 8, the argument of the 

e2 + Y C / Z  = the true anomaly 

r2/g = e, the instantaneous 

I inclination of the orbit plane, 

latitude, 

eccentricity. 

We can therefore see that rl = 0 implies that the satellite is in the 

equatorial plane, and r2 = 0 implies that the instantaneous eccentricity 

is zero. 

Angular variables are used extensively in orbit problems, but 

they can introduce analytic difficulties, e . g .  the failure of some 

general perturbations methods when the eccentricity is small. This 

is due to the fact that the Jacobian of the transformation (2.4) is 

equal to the product rlr2. 

either factor vanishes requires study. 

Clearly, the circumstances under which 

Let us first cmsider the vaoishing of r If only even 1’ 
harmonics are present in the potential function (1.3), then orbits 

in the equatorial plane are possible, i.e. r 0 defines a class 

of orbits at zero inclination. Furthermore, since r1 = 0 implies 

that both the velocity and acceleration vectors are parallel to the 

equatorial plane, rl cannot w i s h  at isolated times. 

zero, then it is identically zeroI 

become 

1 

If it is ever 

The differential equations (2.1) 

v 5 0. (2.6) 
2 

U” + u = A + h u , 
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It is easy to see that this equation has periodic solutions which 

can be represented as elliptic functions. 

desirsble situation that rl = 0 implies rl E 0, and the remaining 

equation has periodic solutions for a wide class of initial cond- 

itions 

We therefore have the 

It is worth noting that the circular orbit in the equatorial 
z plane defined by r = 0, u = A + h u has constant but non-zero 

instantaneous eccentricity. Furthermore, other periodic solutions 
1 

do not in general correspond to closed paths, since the period of 

the solution need not be commensurable with 2n. 

Not let us consider r = 0, that is, an orbit with zero 2 

eccentricity. 

follows from (2.1) that this can only happen at isolated times, 

Since r = 0 implies that u = g(rl), u/ = 0, it 2 

At such a time, e2 is not well defined. 

many approximation schemes using classical angular variables give 

It is not surprising that 

poor results for orbits with small eccentricity. 

In order to introduce a coordinate system having the property 

that r2 = 0 implies r2 E 0, and that the remaining differential 

equation has periodic solutions, we let 
OI 

k = l  

k=l 
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, 

where the 01 

have t h e  desired property. In other words, i f  

are t o  be determined so tha t  t he  new polar coordinates 
Qk 

k=l 

k = l  

then the a should be selected so tha t  
tw 

(v,v/,o,o) = 0 . 
zJk 

Furthermore, t h e  remaining equation 

(2.10) 1 VI‘ + v = h G(v,v/)v 

k=l 

should have periodic solutions f o r  a rb i t ra ry  i n i t i a l  inclination. 

The determination of such a transformation i s  equivalent t o  

finding periodic solutions of t h e  d i f f e ren t i a l  equations ( 2 . 1 )  

having the property t h a t  as h tends t o  zero, these solutions 

become the circular  orb i t s  a t  t h e  prescribed inclinations.  

mathematical va l id i ty  of t h i s  procedure has not yet  been established, 

except i n  the special  case of equatorial o rb i t s .  However the first 

and second order a terms have been calculated, and t o  tha t  order, 

The 

3k 
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( 2  9) i s  sa t i s f ied .  

(2.10) nave been obtained as periodic functions of w .  

The corresponding approximate solutions t o  

The convergence of the transformation (2.7) would imply t h a t  

r = 0 only i f  r2 E 0 and that (2.10) has periodic solutions fo r  

a rb i t ra ry  i n i t i a l  inclination. The second statement f o l l o w s  f r o m  

the observation tha t  if  r2 E 0, t h e  energy integral  (2.2) determines 

simple closed curves i n  the v,v/ plane which correspond t o  periodic 

solutions of the d i f fe ren t ia l  equation ( 2  .lo). 

2 

In  order t o  calculate t h e  (31 it i s  convenient t o  replace 
Jk’ 

1’ v and v/ by the polar coordinates rl, 0 where, as before, v = rl s in  9 

v /  = rl cos el. 
1 

Recalling t h a t  rl = s in  i, el = p, w e  have from (1.20), 

s i n  2 el, - = 1 +  2 h u  (1 - dw 

A u (1 - rl s i n  2e1, drl 
d w = -  

where, using (2.71, 
m 

k=l 

I f  we now different ia te  the expansions (2.7) of z1 and z2 
2 2  and replace d u/dw , d r  /dw, de /dw by the i r  equivalent expressions 1 1 

(2 .11)  

from t h e  d i f fe ren t ia l  equations (2.1)  and (2.11)  we obtain equations 
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( 2.8) wnere 

2.2 2 5 1  = - ae, + 01 21 - 2A(1-rl) rl [zl + A(l-r;)] s i n  2 9 

Zl2 = (l-rl) 
2 2  2 [zl + A(l-rl)l 

- ae, &12 t %2 - 2Qi1 A(1-r:)2 rf sin 2 €I1 

z = - ae, &2l - 5, + (l-rl) 2 [zl+A(1-rl)](z2r1 2 2 sin 2e1 21 

(2.12) 

2 2  2 + (1-3r 1 sin + A(l-rl)]) 

&22 + (1-r 2 2  ) r sin 2 el (z2 y1 + - q - 5 2  1 1  

= 0 be a solution means that = z2 The requirement that z1 

must be satisfied, that is 
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2 2 3 2  
1 1  + 2A (1-1- ) r sin 20,. = 0 %I 

A(L-I-?)~ ( 2 rl sin 2e1 

2 2r2 sin 2 el = 0 1 - ae, %2 + a2,- 2a11 A(l-rl) 

aCrZ1 - A2(l-ri)3(l-3rf sin 2 el) = 0 q- + 0111 

+ A(l-rl) 2 2  [a2l rl 2 sin 2e1 + 2 T1(l-3r1 2 2  sin e , ) ]  = 0 

The first gnd +,bird inhomogeneous differential equations determine 

all and a21 as periodic functions of 0 with r 1 1 
parameter. We have 

appearing as a 

5 (r e 

a21(rl,el) = r cos el - r2 sin el + 1 

= r sin el + r2 cos al + A 2 (l-rl) 2 3  (1- p r: + rf cos 2 el) 1 1’ 1 1 

(2.14) 

rf sin 2 Q~ 1 3 
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where y and y2 are determined so t h a t  the  equations for  CX12 and 1 
!222 have periodic solutions. It is  easy t o  ver i fy  t h a t  r1 = Y2 = 0 .  

The solutions t o  the other two are 

+ r; cos 4 ell (2.15) 

“22(2(r22e2) = - 1 A3(1-r:)5r:[2(2-rH) s i n  2 - 3 rl 2 s in  4 e,] 9 

where, once again, the coefficients of s in  el and cos el have been 

set equal t o  zero. 

We now have 

- du = . z + w21(rl,e1) + h2a (r e 
dw 2 22 1’ 1 

(2.16) 

1 v = rl s i n  0 

dv 
dw - rl 1 ’  cos 9 - -  

Before proceeding w i t h  the  expansion procedure, l e t  us inspect 

the special  case of t h e  equatorial orbi t .  

zero, we have 

If the  inclination i s  

A + A + A A ~  + 2 ~ ~ ~ 3  , 1 

v = o ,  - -  dv 0 .  du . 
dw - = 22, 
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The radius of the circular orbit in the equatorial plane is 

determined by the quadratic equation obtained from (2.6) by 

setting d u/dw = 0. 2 2  * If' its radius is denoted by 1/A , then 

We now check that the transformation 

u = z1 + A * (A), du = z2 

gives us 

dzl 
d w = 2  2' dw - 1 dz2 - - z + (A - A*) + h(zl+A * 2  ) . 

By construction, these equations have z1 = z 

In other words, the expansion (2.7), when specialized to the case 

of zero inclination, converges and, furthermore, the periodic 

- 0 as a solution. 2 -  

solution 

orbit in 

property 

TWO 

described by the vanishing of z 

the equatorial plane. 

of remaining circular as h tends to zero. 

moving coordinate systems have now been introduced. 

and z2 is the circular 1 
This orbit obviously has the 

The 

first, which uses classical variables, (see page 21) is given by 

1' cos 8 dv - - 
dw - rl v = rl sin el, 

du 
2 '  u = r sin e2 + g(rl), = r2 COS e 2 

(2.18) 

(2.20) 

(2.21) 
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The second, even though complicated, is  su i tab le  f o r  nearly c i rcu lar  

o rb i t s ,  It is  given by 

v = s s in  - dv = s1 COS 4, 1 dw 

u = s s in  + g(sl) + 2 (2.22) 

k=l 

( t o  avoid confusion, we w i l l  use s,$ as polar variables i n  the second 

s e t ) .  

Relative t o  the  first s e t  of polar variables, the d i f f e ren t i a l  

equations ( 2  .l) become 

- -  drl - - Aur (1-r:)’ s i n  2e1 
dw 1 

(2.23) 
- de2 = 1 - h ( F 1  COS e2 + F2 s i n  e2)/r2 
dw 

dr, z - =-Au(F~ s i n  e2 - F~ COS e2)  dw 

where, fo r  brevity, 

2 u = A ( l - r l )  + r s i n  Q2 2 

2 2 2  F1 = 2Arl(l-rl) s i n  201 

F2 = (l-rl)[rl 2 2  r2 s i n  2e1 cos e + (1-3rl 2 2  s i n  e , ) ~ ]  
2 



t 

The presence of rZ in  t h e  denominator of the e2 equation serves 

as an expl ic i t  warning that low eccentr ic i ty  orb i t s  require 

special  care. 

In the modified variables, we have 

dsl 2 2  - = - Ausl(l-sl) dw s i n  2pll 

where 

Clear 

w e  leave 

U 

.y s2 = 0 

m 

k = l  

s no longer a cause of concern since t h e  charige of 

variable has  been made i n  such a way t h a t  every Z (s jk 1"2,$1'#2) 

is divis ible  by s2. 

Both se t s  of equations a re  i n  what w i l l  be called normal form, - 
They can be studied with the aid of the Diliberto expansion procedure 

(2.24) 

outlined in  the introduction and described more ful ly  in  the next two 

sections. 
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3. TBE PERIODIC INTEGRAL 

En t h i s  section we present an expansion technique f o r  

determining an analytic integral  

which has the property t h a t  it specializes t o  the angular momentum 

integral  if the oblateness parameter i s  s e t  equal t o  zero. 

requirement t ha t  *be doubly periodic with period 2 s  i n  

arises from t h e  change from Cartesian t o  polar coordinates. 

The 

and e2 

The f i rs t  s e t  of polar coordinates and equations (2.23) w i l l  be 

used in  t h i s  section since they are somewhat simpler than the second 

set (2.24) .  We write 

CD3 and R a r e  given in (2.23). 
3 

where the functions 

We seek an integral  having an expansion 

n = l  
If we d i f fe ren t ia te  (3 . l ) ,wi th  respect t o  W ,use the expansion 

(3.3) and the d i f f e ren t i a l  equations (3.2), w e  obtain the following 
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in f in i t e  set of partial d i f fe ren t ia l  equations: 

n 2 2, 

where pi 

If these equations have periodic solutions, then the 

sequence of functions (Hn) can be used t o  define a formal 

analytic expansion of the  integral  #. 

informati on is  available concerning the convergence of the  

ser ies .  

be sa t i s f ied  so t h a t  t h e  functions (H,) w i l l  be periodic. These 

condltions r e s t r i c t  the class of coordinate systems which can be 

used i f  a normalized integral  ( i . e . ,  74 = rl i f  A = 0) i s  t o  ex is t .  

For the coordinate 

(unpublished theorem of S. P. Diliberto and W. R. Haseltine) 

t h a t  these conditions are sat isf ied.  

A t  t h i s  time, no 

A s  w i l l  be shown, an in f in i t e  set of conditions must 

systems used i n  t h i s  report it can be shown 

The following elementary theorem is needed fo r  the study 

of the equations (3 .4) .  
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a 

THEOREM: A necessary and suff ic ient  condition tha t  there e x i s t  a 

doubly periodic solution of the  d i f f e ren t i a l  equation 

i s  t h a t  the doubly periodic f’unction g satisfy the equation 
21 

g(B1 + t 0 2n ’ 2  + t )  d t  = 0 . 
0 

If t h i s  condition i s  sat isf ied,  the general periodic solution 

i s  given by 

f = @ + h(8 -0 ) 2 1  

where h is  an arbi t rary different iable  periodic function and the 

operator Q is  defined by 

2Yt 

Qg = L J g ( e l  2Yt + t,e2 + t )  d t .  

0 

It can be verified that  ME$ = 0; therefore we can write 

(3.6) 

(3.7) 

(3.8) 

The periodic function hl i s  t o  be selected so t h a t  5 can be calculated. 

We therefore require t h a t  

MP(-QR1 + hl) = 0. 
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Using the def ini t ion of the operator P and the f a c t  t h a t  a 

function of 0 i s  unaffected by the  operator M, w e  get  

where 

A 2 2  2 
A = M( 8, - 0,) = z( l - r l )  (5  rl - 4) (3.12) 

Since A does not vanish except f o r  o rb i t s  a t  the c r i t i c a l  inclina- 

t ion,  cos As stated i n  
2 i = l/5, w e  can sa t i s fy  condition (3.10). 

the introduction we have not yet made a study of t h i s  exception. 

The sat isfact ion of (3.11) is not suf f ic ien t  for the  computability 

of the  function H,, for  we must know t h a t  hl((jl) i s  periodic. 

equation (3.11) w i l l  define a periodic function if  and only if 

The 

2rr 

JWWl dV = 0. (3.13) 
C 

If t h i s  condition is satisfied, we can itoinpiite H 

s teps  follow the  same pattern. 

The sc5sequent 2 '  

A t  each s tep w e  take 

with 

together w i t h  t h e  periodicity condition 
2n 

JMPW Hn,l d y  = 0. 

0 
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The infinite set of conditions (3.16) place a restriction on the 

coordinate system and, ultimately, on the differential equations 

being studied. As stated, it can be shown that they are 

satisfied here, and therefore the sequence of doubly periodic 

function (Hn} exists. 

Even in the absence of information about the convergence 

of the series (3 .3 ) ,  the formulas can be used to define torus- 

like surfaces, which would approximate the conjectured periodic 

surface. A statement about the degree of the approximation 

requires, at the very least, knowledge that (3 .3 )  is an asymptotic 

series. 

If we set N - 
ppl = rl + zh”~, 

n=l 
(3.17) 

and write the known energy integrsl as 

then these two equstions can be solved by iteration to give 
N 

n=i 

In this way, we have obtained 

surfaces. 

j = 1,2. 

the equations of our approximating 

(3.19) 

It should be noted that because the functions appearing in 

the differential equations ( Z  2 3 )  have finite Fourier series in 

Q and eZp this will be true of the functions Hn, hn and S 
3n“ 1 
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The equations (3.19) define a surface which we hope to be 

close to a surface to which the solutions are constrained. 

can be used together with the differential. equations for el and €I2 

to approximate the motion on the surface. 

the next section. 

They 

This is the subject of 
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, 

4, APPROXIMATIONS ON THE SURFACE 

We will now consider the problem of approximating the solution 

of a differential ewtion aeflned on a torus-like surface. 

equation is obtained by taking the 8 equrtions of (3.2) and 

substituting the periodic surface approximations (3.19). 

'This 

J 
We have 

3- de 
- = l + h  dw 

These equations define 

appear expJieitly, we can take either el or e2 as a new independent 

variable. For example, if e2 is chosen, then 

- =  I 1 + h @ ( e l ,  e2 ,h ) .  de2 4 

Tie solutim to 

The position of 

of t is known. 

this angle-time 

n=l 

this equation is an integral curve on the surface. 

the satellite cannot be found until e2 as a function 

The first order solution of the problem of finding 

relationship is given in section 6 .  

It should be noted that although we are using the notation of 

one of the two coordinates systems employed in this report, the 

formalism of this section applies to both. 
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It i s  a c lass ica l  resul t  t h a t  the average slope, or  more 

precisely, the rotation number, of a solution t o  a d i f f e ren t i a l  

equation such as (4.2) exists and is independent of the i n i t i a l  

conditions 

a t  h = 0 is  defined by 

Therefore a continuous function c(A) which vanishes 

iim el/e2 = 1 + ~ ( h )  e . 
e2+ 

It is  not always t rue  t h a t  c(h)  i s  analytic.  However it w i l l  

be shown i n  t h i s  section that  if  @ is  an analytic f’unction of the 

three variables e1,e2 and A, and if M 8 # 0, then c(h) has a formal 

power ser ies  expansion. F’urthermore, a change of variables can be 

made 

so t h a t  

- = l +  dQ1 c(h)  = 1 +  

n=l  dq2 

The doubly periodic func tbn  B(B1,e2,h) w i l l  be given by a formal 

power series i n  A. 

Clearly 

(4.3) 

(4.5) 
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i s  a formal f irst  order solution of (4.2) 

The formal se r ies  expansion of B i s  writ ten 

hB(Q1,e2,N = p 3 n ( e l , e 2 ,  + b n cry11 , (4.7) 
n = l  

where MBn = 0, (I) = e2 - el, bn has period 2s i n  v ,  and bn(0) = 0. 

This last condition i s  an arbi t rary determination of a constant 

of integration; another choice would give a transformation of 

the same type. 

To determine the functions Bn and bn, w e  d i f fe ren t ia te  

equation (4.4),and substi tute from (4 .2) ,  (4.5) and (4.7). 

After eqgating coefficients of powers of A, we obtain an i n f in i t e  

s e t  of equations 

As before, the r igh t  side of these equations must have zero mean. 

The periodic functions bn(v) and the constants cn w i l l  be selected 

inductively so tha t  t h i s  condition i s  sa t i s f ied .  
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' 0  

From the first equation, we see t h a t  c1 = M r1 (a constant f o r  

both coordinate systems). We now use an inductive argument. Since 

bn i s ' s  function of only, M r db /d = c1 dbn/d(/J . Therefore 
C1 n a 

n 

k= l  L 

+ ae, aBn-,llJ 
This  equation contains cn as a parameter. 

reqluirement t ha t  b have period 2n i n  (,b . Hence 

It i s  selected by the 

n-1 

Having determined c 

found by applying the Q operator t o  the r igh t  side of equation (4.8). 

For example, 

and bn-l, the doubly periodic f'unction Btl i s  n 

(4.9) 

(4.10) 

(4.11) 



8619 -6004-TU-000 
Page 42 

5 .  FORMULAS AND IWMERICAL RESULTS-FIRST METHOD 

A FOR" program, based on t h e  expansion developed in  

prececding sections, has been writ ten t o  calculate the posit ion and 

velocity components of a s a t e l l i t e .  

here beginning, after a few more preliminaries, i n  5.4. 

Formulas used are collected 

5 -1 Notation d i f f e r s  somewhat from t h a t  of previous 

sections. We have 

el = B, = p, e2 = 0 

and the incl inat ion i (rather than s i n  i )  corresponds t o  rl, 

re f lec t ing  the f a c t  t ha t  programming began before the merits of the  

present choice were appreciated. With these changes, the system 

(2 .23)  becomes 

6' = 1 - hu(F1 cos u + F2 s i n  u)/p 

i' = - hu s i n  i cos 3 i s in  2B 

p' = - ~ U ( F ~  s i n  u - F~ COS a) 

where, i n  the in te res t  of brevity, 

u = p sin u i A cos2 i 

= 2A sin 2 i cos 4 i Sin 28 
F1 

2 2 $. s i n  28 cos u + (1-3 s in  = cos2 i [p  sin i sin2 B)u] F2 



9619- 6004 -TU-000 
43 

If, i n  accordance with Section 4, we adopt u as independent variable, 

there resu l t s  

di 
da - = AR1 

where, t o  order zero i n  A - as is  appropriate i f  the system is t o  

be solved t o  first order only, 

1 4 6 = 01 - 8, = z p cos i [ Z  s in  (lye) - s in  (1$+3p) - sin(V-p)] 

+ A cosb i (1-cos 2g) 

- 3 A COS 4 i s i n  2 i [COS(~(Y+@) + 1 - cos(2@+2g)- COS 433 

A2 cos6 i sin2 i [ 7  sin(3p+(1/) + sin(p-p) - 6 sin(q+g)] +r;p 
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1 R 1 = - - 2 p c0s3 i s in  i[cos(g-y> - cos(3p+(y)] 

5 - A COS i sin i sin 2g 

1 4 2 R2 = z p A cos i s i n  i [ s i n  28-3 sin(4@+2q) + 3 sin,ZB+Z(r 

1 2  6 2 - A cos i s i n  i[cos(B-v) - 7 cos(3p+l#) + 6 cos(yl+g)] 

p2 cos2 i s i n  2 i [ 5  cos(g-(~) + cos(3g+y) 
+ z  

2 6  + A cos i cos(#J+) 

1 2  2 + 6 p cos i[cos(ql+B) - cos(y+3p)]  

Here, as elsewhere, fl= e2 - el = u - f3. 

apply the operators M and Qwhich were defined i n  Section 3, we 

have first reduced t h e  f'unctions R1, RZ, and 8 t o  a form f ree  from 

products of trigonometric functions of u and /3 and have then 

eliminated u. 

5.2 

To make it eas ie r  t o  

A formula for longitude of the node is  needed, but 

t h i s  presents no d i f f i cu l t i e s  . 
our present variables, follows 

From (1.20), after introduction of 

3 2 fl' = - 2 Au cos i sin g 
2 = - 2 ~p s i n  u + A cos2 i) c0s3 i s i n  g 
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Since, fram the equations of t h e  preceeding paragraph it i s  evident 

t h a t  

u' = 1 + O(h) 
i = io + O(A) 

P = Po + O ( N  

p = Bo + u - u + O(h) 
0 

with subscript zero denoting values at  the  i n i t i a l  time, we have 

t o  first order in A 

- a = - 2~ cos 3 io[po s i n  u + A cos2 io] s i n  2 (a-uo+p0) 
da 

This d i f f e ren t i a l  equstion can be integrated without d i f f i cu l ty  t o  

yield the  r e su l t  found below i n  5.12. 

5.3 With the  new variables, the energy in tegra l  (2.2) 

b ec ome s 

pz = cos2 i[A2 cos2 i + 2 E p-2 + 2Au3'l - s in  2 i sin2@)] 
'3 

In order be t te r  t o  separate terms of d i f fe ren t  order, cos2 i is s p l i t .  

2 2 
io) cos2 i = cos2 io + (cos i - cos 

- s i n  (i+io) s i n  (i-io) 2 
io = cos 

Introducing a constant 

-2 2 2 
io f = 2Ep + A COS 
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may a l so  be evaluated 

from which 
2 

2 
PO - E =  

cos io 

using t h e  energy in tegra l  a t  i n i t i a l  time, 

~ A U  3 1  (- - s in  2 io s i n  2 B,) 
0 3  

5.4 The calculations t h a t  are performed w i l l  now be outlined. 

Since the angle-time relationship (Section 6) i s  not included i n  the 

present program, it is necessary a t  each s tep to  coIlrpute (I using 

posit ion and velocity components obtained by some other method, 

which a l so  provides a standard of comparison f o r  the resul ts .  

The formulas may be compared w i t h  those i n  [3] ,  i n  which a 

d i f fe ren t  s e t  of coordinates w a s  used. 

It w i l l  be noted t h a t  t he  new choice of variables great ly  

simplifies t h e  formulas. 

mean radius of the earth),  p, and J = - 3B2/2R together with the  

i n i t i a l  time to, and t h e  i n i t i a l  posit ion and velocity components 

Xo, Yo, Zo, io, ?o, io. 
constants of t h e  orb i t .  

Input values are the constants R (the 

2 

The program first computes additional 

2 2 
p = xo to - io Yo y A =  p/p h =  JAR 

5.5 From i n i t i a l  components (and later from components 

computed by the comparison method) the program evaluates various 
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variables as follaws 

2 2 2 2  r = X  - t Y  + 2 ,  

u = 1/r 

w = (w 
r x v  - -  

w ,wz) = 
I rxv I x' Y 

j cos i = wZ ; i = arcteLn(sin i/cos i) 

2 
p s in  a = u - A cos i 

rmv 
COS i - - 

P r 
p cos a = u' = - - - 

p = j, s in  a) 2 + ( p  cos a) 2 

p s i n  u 
p cos u a = arctan 

5.5 In turn,  longitude of node, r igh t  ascension and 

declination, and argument of l a t i t ude  are fmnd.  

W 
s i n Q = - ;  wX c o s Q = - -  Y ; Q = arctan(sin Q/cos a )  s in  i s i n  i 

s i n  8 e* = arctan - , c o s 8  * = - s in  0 = - * Jxz+Y2 
r r '  cos 8 

* * * cos p = s i n  8 [cos 9 cos SI + s i n  fl s in  QJ 

* 
s in  f3 'Os * ; = arctan - 

s i n  i cos f3 
s in  f3 = 
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Conventional formulas are used to find the remaining osculating 

elements. 

r 2 
e c o s E = - -  - 1 ;  a =  r v  

P 1-e cos E 

e sin E = j e = J(e cos E)  2 + (e sin E) 2 
r . v  - -  

r 

sin f f = arctan - cos f 

Apogee height = a(1i-e) - R 
Perigee height = a(1-e) - R 

5.6 Other f’undamental quantities computed from initial 

conditiozs are the constant introduced in Section 4 

1 4 2 
C1 = - 5 A COS io (1-5 cos io) 

the constant in the expansion of the energy integral 

2 

2 
- 

PO - 2 A U i  (; - cos2 eo) E =  
cos i 

0 

the energy itself 
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and t h e  period 
? --- 

5-7 

given by 

The function B1 of Section 4 is, i n  the present case, 

where 

6 @l@,. = I[ A COS i 

r[ 4 2 = z A COS i (1 - 3 cos i) 

+ A cos6 i - s i n  2 4  r L A 

4 Q Q ~  = - A cos i s i n 2  i [- 2 s i n  (20+2p) - 

t- ‘4 3 s i n  20 + 3 s i n  

f 

20s (u-2p) 1 
3 ,  2 

283 
1 4 cos (2p-a) 

L 

4- - cos 5 2 3 1  
- p cos2 i s i n 2  i rx COS (30-2B) + & cos (2p-0) 

9 l 1  
+ 8 cos u - 8 cos 3a 

( formula continued next page ) 
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-p cos2 i [- # cos (3 + $ cos 3 3  

-A i Il;l - + sin 2 j  

A2 6 
P 

+ - cos i cos u 

The associated function bl is slightly less complicated 

where 
2 8  K = A COS 

L 

K 

i - g) + cos 2 i ( -  5 sin2 i + 2jJ 

4 1  
+ p cos i sin i (i;4 sin2 i - 65) + cos2 i ( -2 sin 2 i + i;) 5 + cos i 

% 
4 

3 sin2 i + ijJ + 2  A cos12 i [,in2 i ( - 6 

4 r 2  65 
P 

5.8 As usual, computation reverses the order of analysis, 

so the ftmctisns H and h, of Section 3 are next to be evaluated. 1 & 

= H1(i,P,P,d = - w1 + hl 

where 
1 

i sin i cos 2f3 
r 3 

1 w1 = p i sin i sin ( a - 2 ~ )  + - sin (0+2p1] 

1 5 + - A cos 2 

2 s i n 2 i  
2 hl = P 

2AC1-5~0~ i) 
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In i t i a l ly ,  the constant 

i s  a l so  calculated, 

5.9 After computing a l l  the above quantit ies for the  

i n i t i a l  time to, the program is given X Y ,Z ,8 ,? , A  (output 
g ’ g  Q Q Q 

from t h e  comparison method) a t  some l a t e r  t i m e  t. Using t h i s  

input i n  the formulas of 5.5 and 5.6, the program computes 

r , Y , u , i , n t ~ * , B * , B , u , p , f ,  and apogee and perigee heights. 

addition, the revolution number N is taken as the  integral  par t  

In 

of ( t - to ) /P 

5.10 Using the  value of u j u s t  found, together with the 

various i n i t i a l  values, the  program computes 8 by an i t e r a t ive  

procedure. To start, we se t  

= Bo + (.-u0)(l+hc1) + hCl(2lfNj $1 

Subsequently, w e  have 

= Bo + ( a - ~ ~ ) ( l + h c ~ )  + hcl(2fiN) 
’k+l 
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and u t i l i z e  the formulas of Section 5.7. The calculations a re  

repeated as many times as a r e  necessary t o  achieve convergence. 

In general, the value of f3 at t h e  end of t h e  t h i rd  i te ra t ion  w a s  

the same as t h a t  i n  the second. 

speaking, can be obtained without i t e ra t ion  (here or below) but 

numerical resu l t s  seemed improved by a few repet i t ions of the 

cycle. 

F i r s t  order results, s t r i c t l y  

5.11 With u and f3 now known, another i t e r a t ive  proceedure 

is  used t o  f ind i and p. 

2 
'k+l = cos2 i k + l  J 1 E - A s in  (io+ik+l) s i n  [N 1 0 0 0 0  (i  r P  ,B , u  

2 

where 

2 
ik+l  

U = p sin u + A cos k + l  k 

T h i s  calculation starts w i t h  k = 0 and i s  repeated u n t i l  the values 

of i and p converge. 

known t o  first order. 

integrals  t o  f ind the periodic surface; see the end of Section 3.  

As a resu l t  of t h i s  computation u(f3) is 

Note t h a t  we are here inverting the periodic 

5.12 Thus having obtained t h e  values a t  time t of i,p,P,u,and u, 

the program computes the corresponding position and velocity vectors, 
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as follaws: 

2 1 $2 = - h COS io A COS io 
~ 3 [ p u - u o )  + 2n l  - z (sin 28 - sin 

I 

3 
3 cos p 

cos f3 - - - cos f3 + 2p0 [- cos(uo-f30) + 3 0 

+ - 1 s i n  (uo-po) ( s in3  - s in3  pod] 
3 

+ "0 

xc = + Yo, p cos a - s in  p cos i s i n  a 1 
L 
c 

b i n  B cos i cos + cos B s i n  n Yc = - 

zc u 

3 U 

1 = - s i n  i s i n  p 

i = - 2 ~ p  cos2 i u 3 2  s i n  p 

i = - ZAP cos2 i s i n  i ( s i n  p cos p> u 3 

21 b = - -  4 pu2 E + 2hu cos i s i n  p 

2 = -p (p cos a) 

cos i 

cos i 

ii = 1 p s i n  n + s i n  cos i cos a )  i 

- ( s in  p cos 0 + COS p cos i s i n  Q) fi 
U 

+(sin p s i n  i s i n  a )  i] 
+ i. [cos B cos a - s i n  p cos i s i n  1 



' 0  

i = 1 [-(sin p cos i s i n  Q + cos B cos 0) ir 
U 

+(cos p cos i cos Q - s i n  p s i n  Q )  

- ( s in  p s i n  i COSQ ) i 

+ i. bin p cos i cos 0 + cos 8 s i n  S;l '1 
L -I 

'1 i = 1 p i n  i cos p fi + cos i s i n  p i 
U 

L 

, 

Final ly  the program computes the  semi-major axis, eccentr ic i ty ,  

apogee height, and perigee height. 

Perigee height = a(1-e) - R 

Apogee height = a(l+e) - R 
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Once these results have been printed, another set of comparison 

values may be read and computations, starting from 5.9, repeated. 

The numerical results are given in the table below. The 

maximum Ar for each revolution is given in feet and is the square 

root of the sum of the squares of the differences between the 

Diliberto coordinates and those of a step by step integration run. 

The Diliberto coordinates were computed at 5 minute intervals 

during the first revolution and at twenty minute intervals there- 

after. The comparison program utilizes the Cawell formulation with 

the Gauss-Jackson integration method and has been carefully tested 

to make certain that it is not, for present purposes, significantly 

in error. 

and the revolution number M are given. 

e = 0.005, 0.1, 0.2 and i * 5', 45°,630r850. 

values of &, even for the first revolution, that the Diliberto 

formulas given in this paper are not applicable to orbits of 

eccentricities as small as e = 0.005 

The initial values of inclination i and eccentricity e 

Runs were made for 

It was obvious from 
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i = 4 5 O  

e=0,1 e=O. 2 

1 2884 

2 295 3 

3 3363 

4 3605 

5 3729 

6 4006 

7 4088 

8 441 3 

7 39 

883 

1112 

1282 

1390 

1646 

1832 

195 6 

747 

960 

1550 

1720 

2 397 

2504 

3245 

3288 

559 

451 

708 

882 

979 

1047 

1291 

1513 

9 4455 2187 4085 1656 

10 4820 

11 4812 

1 2  5212 

1 3  

14 

1 5  

16 

17 

18 

19 

20 

5170 

5609 

5532 

5995 

5886 

6389 

6343 

6787 

2431 

2549 

2672 

2992 

3193 

3274 

3496 

3793 

3932 

3957 

4 310 

4063 

4919 

4946 

5766 

5829 

6584 

6707 

7391 

7582 

8214 

845 3 

175 3 

195 5 

2203 

2 365 

2 467 

2640 

2909 

3084 

3178 

3331 

3623 



I,= 63' i = 85' 

e=O. 2 N e=0.1 e=O. 2 e=O. 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

41793 

38647 

34372 

37268 

35749 

39620 

37045 

36104 

38402 

35516 

39683 

40986 

41005 

41410 

42282 

41798 

43579 

42217 

44873 

4477 

4321 

4630 

4081 

3615 

4638 

4933 

4389 

3994 

4988 

5246 

4660 

4356 

5 322 

5545 

4984 

4730 

5 644 

585 3 

5557 

7205 

8889 

10566 

12413 

13876 

15942 

17230 

19459 

20593 

22972 

2 3921 

2649 

27306 

30045 

30651 

33572 

33994 

37079 

986 

962 

1258 

1714 

1942 

1954 
2203 

2673 

2924 

2939 

3159 

3641 

3901 

3930 

4115 

4616 

4890 

4925 

5051 
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6. THL: ANGLE-TIME RELATIONSHIP 

The Diliberto expansion procedure has been used t o  determine 

the posit ion and velocity of a s a t e l l i t e  as a function of an inplane 

angle e2. Although these formulas are a first order approximation 

t o  the path of the s a t e l l i t e ,  the determination of posit ion on the 

path a t  

between 

mot ion, 

any instant  requires knowledge of the relationship 

e2 and the time, t. 

one obtains t as a function of e2, i n  effect ,  a generalization 

As i n  the simple case of e l l i p t i c a l  

of Kepler's equation. 

method., e.g. by i terat ion,  i n  order t o  obtain €I2( t)  . 
It i s  necessary t o  invert  by some approximate 

The formulas which are discussed i n  t h i s  section have not yet been 

programmed and checked against a set of reference orbi ts .  

derived using the  simpler of the two coordinates systems which have 

been studied, but the method can be used f o r  the low eccentr ic i ty  

system. 

They were 

We have as our def ini t ion of the variable w, 

2 Hu dw 
d t  
- =  

Therefore, 

The variables el, r , r which occur i n  t h e  expression are known 

t o  first order as functions of e2. 
1 2  

We have 
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Let us write 

and decompose V into the sum of a function of Aq and a Function with 

zero mean, i.e. 

(6.5) 

where 

j ( 4 , A )  = Mv, L = v - Mv , 
It will now be sham that the integral of V can be written as 

where the mean of the doubly periodic function G is a constant of the 

integration. The formulas in this representation of the! integral 

of V have not been restricted to first order approximations. 

example, we suppose q1 = q1 + (1 + c ( h ) )  %. 
For 

0 

To determine the flrnction G, we differentiate (6.6) and use 
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t h e  elementary f a c t  t h a t  

Afte -: cancellation, we obtain 

Up t o  t h i s  point, no approximation has been made. The existence and 

ana l f l ic i ty  of the  function G is  known since V,4, and L a re  analytic.  

The f a c t  that G is doubly periodic follows from a special  property 

of the  f'unction L, namely t h a t  it can be writ ten as a f i n i t e  

Fourier se r ies  i n  q1 w i t h  coefficients which are periodic functions 

of 0 ~ .  
periodic function w i t h  fundamental periods 2n and 2n/( 1 + c )  . 

It follows t h a t  t he  integral  of L(ql(%),%) is  an almost 

Since any such function can be written as a doubly periodic function 

i n  q, and %, the representation (6,6) is correct.  

The expl ic i t  formula f o r  G is  found by expanding it i n  powers 

of h and determining t h e  coefficients from equation (6.8). Le t  

- 

L =pn, c(h) =z e c n ,  G = ch"+llGn. (6 .9)  
n=O n=l  n=O 
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As usual, we obtain bll i n f i n i t e  set of partial d i f f e ren t i a l  equations. 

100 speci.l mmlysie is needed t o  prove t h a t  periodic solutions can 

be obtained, since, by construction, the functions appearil?g on the  

right side have zero mean. The equations are 

In the  present problem, 

(6.11) 

Therefore aLo/aql = 0, and 

w i t h  t measured from a time at which flz vanishes. 

Explicit  formulas for the functions appearing i n  t h i s  equation 

have been derived i n  terms of t h e  variables used in  the  preceeding 

section. The development proceeds as follows. The f’unction S1 is  
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already available, since to the required order 

and there is no difficulty in obtaining S2 by substituting (6.3) 

in the energy integral and equating coefficients of h. 

expansion of V to get Vo and V1 is straightforward and not too 

laborious; the first term in (6.11) is then readily identified 

with the true anomaly-time relationship for elliptic motion. 

this point the direct approach seems to break down. 

necessary integrations can be carried through, terms proliferate 

The 

At 

While the 

until merely to set down the final expressions obtained for 

Vl,MVl, and Q(V1-MVl) would take some eleven pages here. 

these massive formulas are not particularly instructive, they 

are omitted. 

Since 

0 
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7. FORMULAS - IQW ECCENTRICITY METXOD 

The FORTRAN program for the low eccentricity method is a 

modification of the basic program and resembles it in many details, 

so we will concentrate here on the differences between the two 

programs and make frequent reference to Section 5 .  

7.1 The system (2.24) is fundamental. However, we set 

q= B, s2 = P, 8, = * 

and again make a change of the fourth variable so that i (not sin i) 

corresponds to s 

equations corresponding to those in 5.1, but be content to remark 

that fb1 and the mean of o2 are as before. To be consistent with 

We will not set forth here the complicated 1' 

the notation of (2.24), we probably should write pi instead of Qi, 
but description of the low eccentricity program will be easier if 

we allow our symbols to duplicate those used for corresponding - 
though not necessarily identical - quantities in Section 5 .  

7.2 Calculations closely parallel those previously described. 

Input and evaluation of initial parameters are exactly as described 

in 5.4 and 5.5 except that we now have 

2 2 
5 2  p sin u = u - A cos i -A 

p cos u = u'- h azl - h2 az2 
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where 

6 sin2 i cos i sin 2g a21 = '5 
3 10 8 2  5, = 2 A cos i (1- 7 sin i + 3 sin4 i) 

1 + 1 A3 sin2 i cosl0 i (44-61 sin2 i) cos 2g + 4 27 sin 2 i cos 48 
9 c 

aZ2 = - 1 A3 sin2 i cosl0 i k ( 2  - sin2 i) sin 28 - 3 sin' i sin 48 
9 

and u/ is calculated as before. 

7.3 Gergy and the related constant are found using variants 

of the previous formulas 

+ u0) 2 - 2~ [A + hu 2 1  (- - COS' Qog 
0 0 3  

2E 1 
2 - t  

2 p cos io 

- 2E 2 E = - + A cos2 i 
2 0 P 

A change in the calculation of s is made necessary by the change 
in significance of p. 

7.4 The functions B and bl are evaluated as in 5.7. Since 1 

and M Q2 are identical with those for the basic method, it is 

only necessary to note that now 
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QQ2 = A cos 4 i s in  

1 1 + p cos r r; cos u - - cos 30. 
2 1 1-3 1 2  

4 65 s i n  i - - s i n  i ( - z c o s  3 4  i - g c o s  2 i - =  4 65 
192 

+ A 2 8 1 2  cos i (,cos i - r; 3 4  cos i 

+ T; 3 2  s i n  i ' 8  9 sin4 i)1 
There is  no change i n  the treatment of H1, pl, and cl. 

75. After evaluating the necessary quantit ies a t  the ini t ia l  

time, the low eccentr ic i ty  program, l i k e  the one from which it i s  

derived, reads posit ion and velocity components corresponding t o  

some l a t e r  time. Again the formulas of 5.5  and 5 - 6  ( w i t h  low 

eccentr ic i ty  modifications) are applied, as i n  5 . 9 )  t o  obtain 

various parameters including a u w i t h  which t o  enter t he  two 

i t e r a t ive  loops. The procedure f o r  finding B i s  unchanged, 

but the i t e r a t ion  which yields u, p, and i i s  modified by using 
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2 E + A 2 s in  (ik+l + io) sin (io-ik+l)l %+1 = 

- 2 cos 2 3 1  i %+1 (T - sin 2 ik+l 

instead of the formulas which appear in 5.11. 

7.6 Computation of position and velocity components, etc. 

is as described in 5.12, except that for calculating the eccentri- 

city we use 

21 
2 2  4 e A  cos i = p  2 p c o s u a  + 2 p s i n u  

+ h2 L{l + Gl + 2 p cos u a + 2 p sin u 54 22 

Unfortunstely, the low eccentricity modification has not given 

as satisfactory numerical results as the basic program. 

iteration converges, but to a limit which differs significantly from 

the value computed frm the comparison coordinates. 

orbit, there is a position error of ten thousand feet only five minutes 

from the epoch. 

complicated than the programming, which is of the sort in which 

The f3 

For one test 

Since the details of the analysis are much more 
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iiylRTRAN is particularly helpful, the difficulty probably lies in 

carrying out analytic proceedures according to the principles set 

forth in Sections 2, 3, and 4. 

routine analysis, we badly need more sophisticated programs for 

algebraic language manipulation. 

To cope with such complicated 



8. POLAR ORBITS 

In this section we apply periodic surface theory to the determination 

of polar orbits of a particle in the field of an oblate spheroid. 

is some novelty in the treatment, as will be noted in the ~pprppriate 

places. 

and writing 

T h e r e  

The orbit is plane; taking polar coordinates in this plane 

we get thc Lagrange equations 

Here €4 is the earth's equatorial radius, J is a dimensionless constant 

measuring the earth's oblateness, and p = GM, where 0 is the gravita- 

tional constant and M the earth's ma6S. 

t = o are ro, +Q, eo, 6 . we introduce 

The initial values at 

0 



and take h and u as new dependent variables and 8 a8 the new 

independent variable. 

and h are 

Introducing z = du/dt. t he  equations for u,z, 

An  in tegra l  of t h i s  eystem is the energy E, which ha8 the  expreseion, 

in terms of the  variables u, z, h, and 0, 

In order t o  bring the  equations (8.1.) into a form sui table  for the 

application of periodic surface theory w e  introduce the  variables p 

8114 u through t h e  equations 

We get the  equwions 



8 = A r+ u s i n  u s i n  28 - cos u[z2 u2(; + 
h h 

do = 1 + 1 [ 3 u cos u s i n  28 + - ' 2 u 2 ( i  + $ cos 20) + e u cos u s i n  
sin 

n [h2 h2 

where u i n  equations (8.4) is obtained frm (8.3). Le t  RZ, R1, B2, a1 be t h e  

coeff ic ient  of A in  the equations f o r  p, h, u, and 8 respectively 

(B1 P 0 ) .  Then a calcul.ation shows 

Since M(R1) E M(R2) = 0 we may calculate integrals  of the form 

using the Diliberto algorithm (described in Section 3). However 

we w i l l  consider an alternativr! change of variables; rather them p and owe 

introduce E and u, where E is given by ( 2 )  and u by 



We note t h a t  u is  the  same i n  both variable changes. 

(8.6) we get 

P’rom (8.8) and 

3 
2 2  2hu ( l  + COB 29), 

2 

h‘ h h 
& (2E + 5 ) = (U - CBC u + 7 7 ;  z 

fram which we get u as a function of E, h, u and 8. 

t o  t h e  first order i n  A, we have 

We note that ,  

h 3 1  1 1 u - % + t ein u - 2 ein u (5 + C s i n  u) (5 + cos 28), { - ,-(2E + 5) 
h h 5  h h 

The equations f o r  E, h,  8, and u are (primes indicate d i f fe ren t ia t ion  

with reepect t o  6) 

u) = 1 + + (J+ + 5 sin a )  cos u sin 28  

+ ‘7 3 sin u (+ + 5 sin u) 2 1  (5 + z 1 COB 26) 

h 5  h 

I. s i n  u cos u s i n  28 (5 + s i n  a )  
h J + ;2 

The equations f o r  h and u are valid t o  the first order i n  h since we have 

used only the  Oth order term i n  (8.8$. Let t he  coeff ic ients  of h i n  the  

equations f o r  h and u be R and 8 respectively. 



For t h e  system (8.9) w e  have the integral  E = conatant; we seek 

now, using t h e  Diliberto algorithm, an in tegra l  of the form 

where fk has period 2n in u and in 0 .  

described in Section 3 a necessary condition for the existence ofpan 

4ntegral of form (8.10) is MR = 0;- t h i s  is easily verified.  

fl i n  (8.10) is given by 

Using t h e  operators M, Q, and P 

!he Cunction 

n 
Sub j c c t  t o  some convenien-i normalization, e .g. ,g (h,E,Z) = 0.  

shows that  

A calculation 

(8.10) 

(8.11) 

(8.12) 



Thus the per id ia  eolution of t8.12) does exist and hgs the e.xpres.sign 

We now eolve for h in h + hfl(h,E,u,8) = a ; we get, valid to the 'first 

order in . a, 

h = a - hfl (a,E,u,@ , 

and eubstltuting (8.15) in the equation for u in (8.9) we get again valid 

to be first order in h, 

h 

+ L2 sin u cos a s in  ze (5 + 5, s in  a) , 
a a I 

(8.14) 

(8.16) 

where 5, = (2E + p2/a) 112 / a  . 
The eolution of ('8.16) can be obtained by Diliberto's eecond 

algorithm; however we will use here the simple procedure of replacing 



u on the r igh t  eide of (8.16) by y + 8, .  where u = uo.when 8 = Po and 

y = uo - €lo. 

constant term of the Fourier expaneion of the  coeff ic ient  of A; the  

Fourier expansion has  only a f i n i t e  number of terms. A calculation 

shows t h a t  c = p / 2 a  . 
solution of (8.16) i s  

On making t h i s  substi tution of y + 8 f o r  u l e t  c be t he  

4 Then it is eas i ly  seen t h a t  the approximate 

u = + (i+hc)e + Af(e), 

where f(0) is  of period 2n and ie given by 

+ L2 s i n  (r+e) cos ( y e )  Bin 2 8  (s + f, s i n  (y&))de 
a a 

(8.18) 
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We subs t i tu te  the expreseion for u (8.17) In (8.15) t o  obtain h 8s a 

function of 8. In doing t h i s  we  make ut3e of t h e  approximation 

s i n  (2e-0) - s i n  (- r +  LAC)^) -hf(e) cos ( -y+( l -Ac)~)  

together with several  other s i m i l a r  approximatione. We get  

5 0  5 0  h - a + h 15 cos 20 - 2(r sin (q + (l-’hc)0) i- E s,.i (r + (dkAc)e) 
2a 

- a + hhl(e) . 
I 

(8.20) 

Thie expression fo r  h i e  valid t o  the first order i n  h; we have neglected 

the  second term on t h e  right of ’(8*19), and the same term i n  t h e  other similar 

approximations. 

we are i n  posit ion now t o  write u = r-l as a function of e. 
Referring t o  (8.8) we w i l l  make the following subst i tut ions i n  order t o  

obtain a valid first order expression: i n  the coeff ic ient  of A w e  w i l l  

replace [ by fo, h by a, and (I by y + (l+Ac)e; i n  t h e  remaining terms 

we make the following Substitutions 

h = a + Ah1(@), 

s i n  u = sin ( r + ( i + k ) e )  + ha@), COB (r+(i+Ac)e). 
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We get then the following expression 

a It i e  clear that (21) i e  a valid spproximatlon only If c, l e  not small 

(high eccentricity case). 

eccentricity transformations described in Section 2, 

If 5, i a  small it is necessary to apply the law 



9 0  EQUATORIAL ORBITS 

If the earth gravitational potential is assumed to be independent 

of longitude, then a class of planar orbits is possible, namely, 

those in a plane containing the polar axis. 

discussed in Section 8 ,  

planar orbits exists if the earth is assumed to be symmetric 

with respect to its equatorial plane. 

equatorial plane and (allowing only the second harmonic as a 

perturbation) are described by solutions of the differential equation 

Such orbits are 

Another, and far simpler, class of 

These orbits lie in the 

3 

so” 2 - + u = A + h u  e 

dw 2 

This special case has been used repeatedly in this report to 

illustrate and motivate the expansion techniques. 

of duplicating sane of these statements, a more extensive analysis 

will be given in this section. 

At the expense 

The specialization to equatorial orbits is frequently useful 

in the evaluation of a general perturbation scheme since it is 

easy to obtain both quantative and qualitative information about 

the solutions of the differential equation, 

compared with the formulas which are to be evaluated, 

reason for studying equatorial orbits is that some of the important 

properties of the general orbits can be examined in detail. 

a satellite can be considered to be moving on a slowly rotating 

These can then be 

Another 

FOP example, 



ellipse in its instantaneous orbit plane with a period (say, 

from perigee to perigee) hepending on the oblateness parameter. 

This representation can be made precise for equatorial orbits. 

formulas describing the orbits can be given exactly in terms of 

elliptic functions or approximated by truncating a zonvergent power 

series in the oblateness parameter. 

the small eccentricity difficulties can be recognized and easily 

overcome when only equatorial orbits are considered, 

The 

As was pointed out in Section 2, 

It should be emphasized that since equation (9.1) has periodic 

s o 2 ~ t i c ~ s  corresponding to the unpertur ed elliptical orbits, the 

basis difficulty of the general problem disappears, namely that due 

to the (conjectured) m o s t  periodic motion of the satellite. 

particular, since the angular momentum vector is constant, the 

conjectured second integral becomes trivial, and the torus on 

which the orbits are assumed to lie becomes simply a closed curve. 

It should also be noted that while a periodic solution to the 

differential equation (9.1) determines a closed curve in the ut 

du/dw plane, the corresponding curve in the orbit plane need not 

be closed. 

In 

- 

It is helpful to forget temporarily the source of eaption (9.1) 

and to consider it as describing the one dfmensional motion of a 

particle in a position dependent force field. 

considered as the displacement, 

The variable u can be 

The energy integral can be written 
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where the "potential  energy" is given by 

2 3  
3 V(u) = u2 - 2Au - - Au 

The basic qual i ta t ive properties of the solutions can be 

studied from the graph of V(u) We have 
V 

(9-3)  

* 
There are two equilibrium points A and A*p which are the  solutions 

t o  the quadratic equation 

(9.4) 2 u = A + A u  

2 2  obtained from (9.1) by set t ing d u/dw 

o r b i t  i n  the equatorial plane corresponds t o  the smaller root, A 

If 0 < A < 1/4, t h e  two roots are d i s t inc t .  

graph tha t  the motion will be periodic if  and only i f  

equal t o  zeroa The circular  
* 

It is clear  from the 

V(A*) C 2EA/v < V(A,) e (9.5) 
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As usual, We can find the p e r i d  ( i n  

dw 
du - = [2EA/p 

i.e. 

the w mrgable) by integrating 

2 U 

Period = Zn/k(A) = 2 s  [2EA/v V ( U ) ] ~ ~ / ~ ~ U ,  

1 

“1 g u2” 

U 

where V(ul) = V(u2) = 2EA/@ 

analytic function with k(0) = 1. 

(9.7) can be writ ten i n  terms of e l l i p t i c  integrals  (see [ T I 9  

Chapter X i i I )  e 

Clearly k(A) is  an 

Since V(u) i s  a cubic, equation 

If the oblateness parameter is s e t  equsl t o  zero, the graph 

of V(u) is  a parabola and a l l  the solutions f o r  the d i f f e ren t i a l  

equation are  periodic, These solutions are c lass i f ied  by t h e i r  

energy 

e l l i p t i c  if 

parabolic i f  2EA/p = 0 

hyperbolic if  0 C 2EA/p 

V(A) - C 2EA/p < 0 

A similar classif icat ion can be made f o r  the perturbed problem, 

however two new types of orbi ts  must be considered. The f i rs t  

i s  a bounded ( i n  u)  non-periodic solution corresponding t o  the 

energy leve l  2EA/p = V(A,). It is  given by 

2 u(w) = a + b tanh c(w - w0)’ 

(9.7) 
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where a, b and c can be found by substi tuting t h i s  expression 

in to  the  d i f f e ren t i a l  equation (9.1). Orbits w i t h  higher energy 

are unbounded i n  u. This means t h a t  they s p i r a l  into the  a t t rac t ing  

body. For the perturbed problem, the o r b i t s  of primary in t e re s t  

are the perturbations of the  e l l i p t i c  o rb i t s  with energy bounded by 

V(A*) C 2EA/p C 0. It should be noted t h a t  the lion-zero angular - 
momentum must be specified before the change in  variable which 

gives equation (9.1) can be made. 

Finally, we note tha t  although the  solution (9.9) is  bounded 

i n  r if  2 < :A < 3/16, a satellite on such an orb i t  would col l ide 

w i t h  t he  earth i n  very short  time if t h e  f a c t  t h a t  t h e  eUztk: has 

f i n i t e  extent is used. 

L e t  us now return t o  the perturbation problem. Approximate 

solutions t o  (9.1) can be most easi ly  generated by using the 

c l a s s i ca l  technique due t o  Lindstedt [ 5 1. A new independent variable 

is  introduced by q = k(A)w, where k (h )  i s  t o  be determined. (The 

notation of (9.7) is  being used deliberately,  since the two scale 

fac tors  are  i n  f a c t  ident ical) .  Then wi th  u(q/k) = c(q) ,  we have 

2- -2 k ( h )  du +; = A + h u 
ds2 

Now we assume t h a t  
m 
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where the are periodic functions with period 2 ~ .  If we let 3 
0 

k2(A) = 1 +I” a 3’ 
j =o 

insert these expressions into (9.10) and equate coefficients 

of A’, we get an infinite set of differential equations of the form 

where the L 

m < j. 

uniquely chosen so that resonance is avoided, i.e., so that 3 (q) 

is a periodic Mction. 

implicit function theorem to prove that the differential equation 

is a function of im, m j and the constants am, 
j 

Fsr esch such equation, the  corresponding a can be 3 

3 
This process can be justified by using the 

(9.1) has periodic solutions depending analytically on h for 

appropriately restricted initial conditions. The period 21t/k( h )  

is of course given by (9.7). For our present purposes the important 

fact is that the solution can be expanded in the form 
00 

u(w) = L A 3  uj(k(h)w). (9.14) 
j=o 

Let us now compare this with the formulas from the Diliberto 

procedure, As usual, we introduce polar coordinates 

* du - s cos @ . d w -  u = A + s sin $, (9.15) 



The energy integral  (2.2) becomes 

2 3 3  (9.16) 2 *2 4 * ~ + Z A A  s s i n  @ + - A s  s i n  # + -  * 2  2 
s = A  - - A A  3 CI. 3 

This cubic equation can be solved fo r  s as a function of #. 

j =O 

This is the equation of the periodic one-surface, i .e .  the simple 

closed curve, on which the solution lies. The motion on t h i s  curve 

$!!! dw = 1 - A sin‘ $(2d + s($) s i n  @) . 
A change i n  variable i s  now made, 

0 

= @ Q1 
n=l 

where the Bn are periodic functions with period 2n. 

selected so t h a t  

They w i l l  be 

dw 
n=l  

Once t h i s  is  done, (9.19) i s  inverted t o  give 

Q1 = (1 + Anen) w 
n = l  a The solution U(W) is given by 

(9.19) 

( 5 . m )  

* 
u = A + s($) s in  pl 



where p(w)  i s  defined by (9.21). 

Comparing t h i s  t o  the Lindlatcdt formula (9.14), we see t h a t  

q = q1 and k(h) = 1 +LAncn.  

n=l  
The Diliberto procedure is easily jus t i f i ed  h t h i s  special  

We need only note t h a t  if F(f8,A) is analytic in A and has case. 

period 2 1  i n  9. then if 

we can determine B(f$,A) and k(A) so t h a t  

To do th i s ,  we d i f fe ren t ia te  the q equation and write the resu l t  

as 

h = - 1 + k ( h ) / ( l  + hF) . @ 

B w i l l  be periodic if  k ( h )  i s  selected so that the mean of the 

r igh t  side of t h i s  equation vanishes. That is, 

(9.24) 

(9.25) 

Having made t h i s  choice, we integrate (9.25) t o  obtain the 

periodic function B($,A). The variable q is now defined by (9.24). 



By construction dddw = k(A). Since the  functions are analytic 

, i n  A, the  expansion procedure can be used t o  compute cn and Bn. 

The f ac t  t h a t  the general procedure as given in  Section 4 

reduces t o  (9.19) can be shown by an induction argument which 

w i l l  not be given here. 

eccentricity change is not made, a similar argument can be given. 

However, t h e  variable rl must be bounded away from zero, or the  

series w i l l  not converge. 

Finally,we note tha t  i f  the small 
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10; AN IWSTRATIVE EXAMPLE 

In the first sections of this report, the problem 

of recognizing the periodic surface is treated as follows: 

If the equations are given in rectangular coordinates we 

introduce polar coordinates in the phase space to bring 

the equations Into the form (3.2). 

of the form (3.3) are then sought; these Integrals, solved 

for r 

which polar coordinates are introduced to bring the 

equations into form (3.2) is crucial. 

properly integrals of the form (3.3) may not exist. 

be possible to change variables in equation (3.2) so that 

the new equations have the same form and, further, have 

periodic integrals with an expansion resembling (3.2); 

this is done in section 6 of [3]. 

always applicable, as we will now show by presenting an 

example in which, although periodic surfaces do exist, 

polar coordinates must be introduced with care of integrals 

of the form (3.3) are to be obtained. 

Periodic integrals 

and r2, are the periodic surfaces. The manner in 1 

If it is not done 

It may 

This technique is not 
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We consider the problem of finding periodic surfaces for the 

equation8 

x 4- x = hy , y 4. y :: Ax * 

If we introduce the variables 5 and q 

we get the uncoupled equations 

*. 
4 4. ( L A )  5 := 0 , ;i + (1.t-A) 4 = 0 , 

(10.1) 

(10.2) 

from which we get the integrals 

o r  

2 2 (kit) + (l-h)(x+y)2 = const, ( i - 9 )  + ( l + h ) ( X - ~ ) ~  =: const. (10.4 

These are the periodic surfacen in the phase space of x, k, y, 9 . 
We can also see this if we write (10 .2)  i n  the following way 
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and introduce polar coordinates 

4 - r1 s in  el i r1 cos el q - r2 sin e2, 4 r2 COS e2 . 
We get then 

so that rl = constant and r2 

and (10.4) 

constanti thio is equivalent to (10.3) 

If however we write (10.1) in the fohn 

and introduce polar coordinatce 

we get the equations 

drl = hr2 COB el s i n  e2 , 

del = 1 - A - sin Ol s i n  €I2 , 
1 r 

dr2 
at = hrl cos e2 sin el , 

( 10.6). 

1 
2 

r 
dt r = 1 - A - sin 8 sin e2 . de2 - 

J 



t 
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The M operator applied to the right sides of the equations for rl 

and r2 yields non-zero quantities. 

the form 

Thus there are no integrals of 

rl +c” fk(rI,r2,el, e2) = const, r 2 +Chkg k (r 1’ r 2’ e 1’ 8 2 ) = const. (10.7) 

On the other hand the periodic surfaces (10.4) do exist. 

in (10.4) we get the following form of the integrals of the Eystem (10.6): 

Putting- (10.5) 

2 2  2 r + r2 + 2r r cos (e2 - el) - A (rl s i n  e + r2 s i n  e2) 1 1 2  1 = const, 

2 2  2 r + r2 - 2r r cos (e2 - el) + A (rl sin el - r2 s i n  e2) 1 1 2  = const. 

What t h i s  example indicates is that although periodic surfaces exist 

it may take more than the introduction of polar coordinates to 

detect them. 



\ 
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